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Abstract

By properly applying scaling laws, it is possible to infer the behaviour of a structure from the response of a similar
model whose dimensions are scaled by a factor . In some cases, however, e.g. in the case of strain rate sensitive struc-
tures under severe dynamic loads, these laws become distorted, severely limiting this approach. In this article, a meth-
odology for the correction of this distortion is explored for the case when the structure and the model are made of
different materials. It is shown that the behaviour of a structure, say, made of mild steel, can be forecast from the
response of a model, say, made of aluminium. The technique here detailed is shown to be valid for simple structures
subject to axial and transverse impact loads.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Scaling models for structural analysis has been less used nowadays due to the extensive availability of
sophisticated finite element programmes. These computer programmes can perform complex structural
analysis with a high accuracy provided material behaviour, boundary and initial conditions as well as
geometry are known.

Nevertheless, there are many instances where experimental validation of a structure, performance is nec-
essary. As an example, extensive bird impact tests against an aircraft fuselage needs to be performed in
order to commission the structure. Tests in such large structures can be quite complex and expensive
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and to avoid them one can test a model identical to the actual structure except for its dimensions, which are
scaled by a single factor, f5. It is said in this case that the model and the structure (or prototype) are geo-
metrically scaled.

Of course, if the prototype response is to be inferred from the model behaviour, the loads applied to the
latter should also be scaled. To this end, there is a systematic way to find out how the measured variables
and applied loads in a model can be correlated with the ones in the prototype.

To fix ideas, consider an elastic wave travelling on a prototype and on a model. If they are made from the
same material, the wave speed, ¢, will be the same in both structures such that the time, 7, for the wave to

propagate a distance L in the prototype is
L
T=-. 1
: (1)

In the model, scaled by

/
= — 2
p=1, @
the time, ¢, for the wave to propagate a distance / is given by
[ pBL
t=-=— 3
c ¢’ (3)
such that
t = BT. 4)

Using a similar reasoning for other variables, one can obtain Table 1, which lists how a variable in the
model can be related to its correspondent in the prototype. Observe from this table that the strain rate in a
model is 1/f times larger than the strain rate in a prototype, whereas the stresses are the same.

In order to exemplify that the scaling laws are valid for complex loading cases, consider a tube axially
impacted by a dropping mass. This problem was modelled by the authors using the finite element method as
implemented in the software ABAQUS. The tube is clamped on its base and has a diameter of 20 mm, wall
thickness of 1 mm and height of 300 mm. The material is elastic, perfectly plastic with an elastic modulus of
210 GPa, Poisson ratio of 0.33, mass density of 7800 kg/m> and flow stress of 235 MPa. These material
characterisitcs represent a mild steel but it is remarked that strain rate effects were not taken into account
in the simulation at this stage. An energy of 2 kJ was applied to the tube by means of a mass of G = 4.44 kg
hitting it at a speed of V= 20 m/s. Gravity effects were not considered.

Fig. 1(a) shows the shell final configuration, i.e. after all the mass kinetic energy was dissipated.

Table 1

Relationships between the model and the prototype for some variables

Variable Scaling
Length (L) p
Mass (G) B
Stress (0) 1
Time (7) p
Velocity (V) 1
Displacement (J) p
Strain (&) 1
Acceleration (A) 1/

Strain rate (&) 1/
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Fig. 1. Final configuration and load profile of a tube under axial impact: (a) prototype, (b) model 10 times smaller but enlarged 10
times for better visualisation, (c¢) dimensionless load times displacement for the model and the prototype.

Another tube scaled by a factor f = 1/10 was also simulated, and from Table 1, it can be seen that the
impact velocity should be the same but the impact mass should be G = 0.00444 kg such that the input
energy is now 2 J. By so proceeding, one obtains the deformed tube in Fig. 1(b), which has been enlarged
1/B8 = 10 times in order to be visible.

It is evident that the original tube and its reduced model are exactly the same, which is further corrob-
orated by the dimensionless load—time behaviour in Fig. 1(c), where the variables were scaled as noted. The
reason for this similar behaviour is that all the variables involved in the phenomenon obey the scaling laws
and so the behaviour of the prototype can be inferred from the model response.

However, this is not always the case when some other peculiarities of the impact phenomenon are taken
into account. For instance, it is well known that when strain rate effects influence the material behaviour
and, hence, the structure response, the model and the prototype will generally not scale.

To better examine this point, consider the constitutive relation which predicts how the static flow stress
in the prototype, o5, is increased by the strain rate, &,

2\ /4
&
L+ (D)

where D and ¢ are material constants and the subscripts d, s and p stand for dynamic, static and prototype
(Alves, 2000).
Observe from Table 1 that the strain rate in the model, m, is

ém = ‘ép/ﬁ7 (6)

such that the model to prototype stress ratio gives
.\ /g
tm) 1/ Lp
{007} {1+()") .
0d, {1_’_(%)1/11} {1_’_(%)1/11}

which clearly varies with the scaling factor, 5, and the strain rate, for a given set of material constants, as
pointed out by Oshiro and Alves (2004).

Since the dynamic stress ratio depends on the scaling factor, it violates the usual scaling laws which re-
quire the stress in a model and in a prototype to be invariant, according to Table 1. This dependence can be

7 (5)

O'dp = Usp
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Fig. 2. Model to prototype stress ratio versus the scaling factor and strain rate for mild steel.

2747

quite significant, as exemplified in Fig. 2, for a range of strain rates and scaling factors when adopting

D = 40/s and ¢ = 5, which are typical values for mild steel.

To demonstrate that the strain rate affects the scaling laws, consider the same tube which was simulated
before but now taking into account the influence of the strain rate on the material response when adopting
D =40/s and ¢ = 5. The tube is clamped at its bottom and the impact velocity and mass are 60 m/s and
1.944 kg, giving a total input energy of 3.5 kJ. Fig. 3(a) presents the final configuration of the prototype,

(@) (b)

Fig. 3. Final configuration of a strain rate sensitive shell under axial impact: (a) prototype and (b) model 10 times smaller (the figure

was enlarged 10 times for better visualisation).
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while Fig. 3(b) shows the tube scaled by a factor § = 1/10 (the figure is again enlarged 1/8 times). It is clear
that the model behaves quite distinctly from the prototype and the reason is solely due to the strain rate
effects.

When comparing Figs. 1 and 3, it is evident that the scaling laws fail to represent the prototype behav-
iour when strain rate effects are considered. Of course, the same can be said when the prototype and the
model are made from different materials.

This problem of non-scalability of the stresses due to the non-linear material response to strain rates is
crucial when dealing with the impact of structures in scaled models. Many authors have investigated the
problem of scaling impacted structures (Baker et al., 1991; Booth et al., 1983; Wen and Jones, 1993; Nurick
and Martin, 1989; Duffey et al., 1984; Jones, 1984; Jones et al., 1984) and some scaling numbers have been
proposed in the literature (Johnson, 1973; Nurick and Martin, 1989; Zhao, 1998), with Li and Jones (2000)
critically discussing them. Also, Hu (2000), Shi and Gao (2001) and Jacob et al. (2004) applied scaling num-
bers to the analysis of plates and shells.

Scaling strain rate sensitive structures have recently received attention by the authors (Oshiro and Alves,
2004; Alves and Oshiro (in press)). The authors have applied a simple dimensional analysis, as outlined in
Baker et al. (1991) and Jones (1989), but using an alternative dimensionless basis to the common MLT
(mass, length, time) basis. The Authors were able to suggest a methodology for correcting strain rate effects,
such that a rational way was devised to change the impact or blast velocity in a way that models and pro-
totypes follow the scaling laws. Also, Alves and Oshiro (in press), have shown a procedure to obtain the
model impact mass for a strain rate sensitive structure such that the model and the prototype behave
the same.

In dealing with the problem of predicting the behaviour of a real structure from the behaviour of a model,
clearly, the prototype and the model should be made from the same material, but this can be quite difficult
to achieve in many cases. It is likely that a prototype made of a steel plate 10 mm thick and its model, say 20
times smaller and hence made of a 0.5 mm thick steel plate, will exhibit different material properties due to
the possible different manufacturing processes of the core material. Such a difference can result in a model
behaving in a way that it makes it quite difficult to infer from it the desired prototype response.

In considering the above issues, this article further expands the methodology in Oshiro and Alves (2004)
and Alves and Oshiro (in press) to the case where the model is made of a different material from that of the
prototype. By so proceeding, it is possible to predict, in an extreme case, the strain rate sensitive prototype
behaviour from a non-strain rate sensitive model response. Likewise, within certain limitations to be dis-
cussed later, it is possible to infer the behaviour of a prototype made from metal by analysing the response
of a plastic model.

The correction procedure is outlined in the next section, starting with strain rate sensitive structures, as
described in detail by Oshiro and Alves (2004) and Alves and Oshiro (in press), and expanding it to the case
of dissimilar materials. Section 3 applies the correction procedure to the problem of the impact of a mass on
a clamped beam, followed by the problem of a beam under a blast load. In Section 5, the axial impact of a
double plate structure is analysed. The subsequent section discusses the results, all showing that it is indeed
possible to correct the distortion of the scaling laws. The major conclusions in Section 7 closes the article.

2. Correcting scaling laws when the model and the prototype are made from different materials

The methodology devised by the authors for correcting the distortion of scaling laws is based on the use
of a dimensionless basis formed not by mass, time and length, as have always been used in structural impact
mechanics, but by the impact mass, G, the initial impact velocity, ¥, and the dynamic flow stress, g4. From
this basis, one can express all the relevant variables of an impact phenomenon, such that, for instance, time
becomes
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G1/3
r——" (8)
1/3_1/3
Vo~ o4
Other variables, such as acceleration, 4, displacement, J, strain rate, ¢, and stress, g, can be obtained as
shown in Table 2, which allows us to generate the following dimensionless I1 terms:

[A»*G] [T3O'dV0] 8oy 6( G )1/3 H
Vieal "I G largl 7| \aaVo o] )
N~——n1, T, ——n, ————, ~~—115

Accordingly, the behaviour of a prototype can be inferred from these dimensionless numbers and from
the scaled model response if there were no distortion. As already pointed out, one source of distortion is the
material strain rate sensitivity and a way to correct it is as follows:

Define a scaling factor for the dynamic stress as

04 S (ém)
Boy =—" =777 10
o, 1Gy) 1o
where fis a generic function given by the material constitutive law. Now, the impact velocity would be the

same in both the model and the prototype, according to Table 1, if it were not for the material strain rate
sensitivity. To avoid the alluded distortion one writes

— VOm

= . 11
ﬁVn VOP ( )
The dimensionless number I1; from Eq. (9) leads to
H3m _ ﬁgﬁad _ BSﬁad _
= 5= 5 = | (12)
11, ﬁGﬁVO B ﬁy/o
and so
Boy = B7,- (13)
Also,
ém
;= 14
h=7 (14)
but it is rewritten as
éC
, = 15
pi="2, (15)

p

since one seeks the correct (superscript c) strain rate. Furthermore,

Table 2
A new dimensional matrix
Basis Variables
A T ) £ o
Vo 4/3 -1/3 2/3 1/3 0
o4 1/3 -1/3 —1/3 1/3 1
G -1/3 1/3 1/3 —1/3 0
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By,
=L 16
B 5 (16)
can be obtained from 1, /174p = 1, yielding
ép

where superscript nc stands for non-correct.
Finally, using Eq. (16), it can be shown that

& = Piny, (18)

which allows for the calculation of the new (corrected) f,

Gan & (Broém
o= B = [ f;f( ¢ ). (19)

Observe that the approach here sets a way to correct the initial impact velocity so that the strain rate and
the dynamic flow stress are properly altered. The particular form of the constitutive model, as described by
the function f, is not relevant in the methodology developed here.

The correction procedure implies that the model, scaled by /5, needs to be simulated so that the strain
rate in its various parts can be used to obtain the stress levels and f, . Eq. (19) is then applied so f;,
and hence the new velocity is determined. With this new velocity, the model is once more analysed and
its response will now be properly scaled so that, for instance, the prototype acceleration will be 1/8 the
one in the corrected model, as is desired. Note that the procedure described above does not rely on any
data from the prototype; the results of the full scaled structure are forecasted solely from the model
response.

The methodology described above for correcting the distortion in the scaling laws due to strain rate ef-
fects can readily be expanded to the case where the model and the prototype are made from different non-
strain rate sensitive materials.

Considering Eq. (19), it can be rewritten using Eq. (5) as

(20)
For materials which exhibit a low strain rate sensitivity, D is very large, which renders Eq. (20) as
G,
= [T 21
b=\ [2 e1)

P

Hence, Eq. (21) is to be used for non-strain rate sensitive structural problems but when the prototype and
the model are made of different materials.
Eq. (20) can also be reduced to

for the case when the prototype material is strain rate sensitive and the model is not.
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Fig. 4. Clamped beam struck by a mass, G, travelling with a velocity V5.

In this article, one seeks to show that the response of a strain rate sensitive prototype can be obtained by
examining the response of a non-strain rate sensitive model. Accordingly, Egs. (20)—(22) will be used
throughout this article to explore the validity of the methodology advocated here, applied to three different
structural problems, as follows:

3. Clamped beam struck by a mass at mid-span

In order to apply the methodology described above, a clamped beam hit by a mass is considered. The
beam has a rectangular cross-section of dimensions B and H, length 2L, struck at its mid-span by a mass,
G, travelling with a velocity V,, Fig. 4. The response of this class of beams has been studied by many
authors (Alves and Jones, 2002a,b; Jones, 1989) and it is relevant in terms of engineering application.

It is sought to obtain the response of a full scale strain rate sensitive mild steel beam, represented by its
mid-displacement, from the results of small scale aluminium beams, with the material properties given in
Table 3.

A theoretical solution for this problem was developed by Liu and Jones (1988), who obtained a final
beam mid-span displacement, W, according to

Wi _H 2GV§L_1

H 2L + BH’o4 ’ (23)

Wwr

which takes into account finite displacements.! The dynamic flow stress in this equation, a4, comes from
Eq. (5), whose strain rate is given in Alves and Jones (2002a) as
V
by = VO/8)(1+ &)1 + 883, (24)
1

which reduces to

14
foq = 70\/ 9% )2 + 8Kk/3, (25)

when the mass hits the middle (¢ = 1) and where # = H/L, with k = 0.26 being a constant which takes trans-
verse shear into account, assumed here to be the same for both materials.

In order to apply the correction procedure for a given test configuration where the prototype response
due to an impact velocity V), is desired, it is necessary to calculate f3, . This should be different from 1 since

! The term 2GV%L/BH 364 can be reduced to GR,/my, where R, = ,()V%L2 / 6oH? is the Zhao dimensionless number (Zhao, 1998) with
my, being the beam mass.
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Table 3

Material properties for the prototype and models

Mild steel prototype Aluminium models
E =200 GPa E=72GPa

p = 7800 kg/m> p = 2800 kg/m*
VE/p=75063m/s VE/p=15070m/s
o5, = 235 MPa os,, = 135 MPa

4p = 3 dm =4

D, =40/s D,,, = 1,288,000/s

there is a distortion in the scaling laws due to the different materials used or to strain rate effects. One now
simply uses Eqgs. (11) and (20),> with the strain rate given by Eq. (25), so the new impact velocity, Vo, 18
obtained. This is then used in Eq. (23) to obtain the new corrected scaled displacement.

3.1. Results

Fig. 5(a) shows the dimensionless maximum beam displacement for prototype and models when no cor-
rection procedure whatsoever is adopted. The prototype beam is 2L = 100 mm long, with B = 7.94 mm,
H = 8.84 mm, subjected to an impact velocity of 50m/s by a mass of 6.5 kg. It is evident that the models,
scaled by = 1/2, 1/4, 1/10, 1/20, are rather distorted in relation to the prototype in the sense that the high-
er the impact velocity, V), and the smaller the scaling factor f, the larger the difference between the dimen-
sionless mid-displacement of models and prototypes.

On the other hand, Fig. 5(b) shows the same dimensionless mid-span beam displacement for the mild
steel prototype and for the aluminium-like models but now subjected to the correction outlined before.
It is rather evident and convincing that models and prototypes behave all the same; the error in this case
is zero.

4. Clamped beam subject to a uniformly distributed velocity pulse

The problem in this section is of a beam loaded with an initial impact velocity throughout all its span
(Fig. 6). Different phases of motion exist for this problem, as detailed by Jones (1989), and of interest here
is the final maximum displacement achieved by the prototype and the model.

The final displacement for this class of beams, W, reads

Wy 1

i E[(1 +32/4)% — 1], (26)

where H is the beam depth and

Y
A= 5
o H

(27)

is a dimensionless impact energy which can also be related to the dimensionless number R, discussed else-
where (Zhao, 1998; Jacob et al., 2004; Li and Jones, 2000).

2 The same results can be obtained by using Eq. (22) since D,, is very large.
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Fig. 5. Dimensionless maximum mid-displacement evolution of a clamped beam hit by a drop mass versus the dimensionless impact
energy. The prototype and the model have mechanical strengths typical of mild steel and aluminium, respectively: (a) no correction and
(b) corrected solution.

Fig. 6. A clamped beam under a transverse blast load.

It can be shown (Alves and Jones, 2002a) that Eq. (26) becomes

1/2

we 1 3pV3iL?

— =1+ —1 28
H 2 <+nasH2 (28)

when strain rate effects are taken into account with the Cowper—Symmonds equation, where
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g4 VO Wf 1
=4 — 29
- * <3\/§DL2> ’ (29)
since the strain rate in this beam is
VoW
i = 3\;§Lf2 . (30)

Observe that scaled beams would have the same scaled final mid-span displacement according to Eq. (28)
if it were not for the strain rate sensitivity factor, n, which, when scaled, gives

B V()Wf 1/q

It is clear from Eq. (31) that the scale factor, f§, cannot be eliminated, which makes Eq. (28)  dependent.
Accordingly, the model response will be distorted in relation to the prototype, which prompts one to apply
the correction procedure outlined before. By doing so, it is possible to scale the beam response even on the
extreme case of models and prototypes being made of different materials.

4.1. Correction procedure and results

The correction procedure is rather simple to be applied and it consists in obtaining the new scaling factor
By, from Eq. (19)

S (Bryim)
Bro =\ pmey (32)
S (Bey)
where the non-correct strain rate for the model, from Eq. (30), is
VoWwsy:
énc — m . 33
Y =i (33)
This yields
Bro VoW \ /4
Tm [1 + ( DL ) }
ﬁV[, = (34)

prowie \ /e ’
a0, [1 + (3\/§DLf§1) }
which can be solved numerically to give fy,.

Table 4 lists the various velocity factors used for each model in order to obtain a final dimensionless mid-
span beam displacement with errors smaller than 2.7%.

Table 4

Results for the beam under an impulsive load

B By, Wi/ H Error (%)
1 - 4.3873 -

1/2 0.5491 4.2691 2.7

1/4 0.5533 4.2753 2.6

1/10 0.5600 4.2848 23

1/20 0.5661 4.2930 2.2
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5. Double plate under axial impact

The last application considers the axial impact of a mass on the double plate structure shown in Fig. 7.
This problem was chosen because it is particularly very sensitive to strain rate effects and it was explored at
length by Calladine and collaborators (Calladine and English, 1986; Tam and Calladine, 1991) and by
Zhang and Yu (1989). It consists of two plates clamped together at the base and at the top. The plates were
pre-bent by a small initial rotation and axially impacted by a mass, G, travelling with an initial velocity, V.

Suppose the test will be performed in a small scale model made of aluminium and from the model re-
sponse one intends to obtain the actual response of a mild steel double plate prototype.

The model in Fig. 7 has two phases of motion which were described by Tam and Calladine (1991), Zhang
and Yu (1989) and further detailed by Oshiro and Alves, 2004 and Alves and Oshiro (in press) in the scaling
context. There is an initial phase of motion where the plates are compressed as described by the shortening

S,
12648\ * w2 . 12645\
Vo—(Sod/G)l‘=2< Gd) %smh 2( ad) t

+3, (35)

ml ml

which ends at 1 = 7; when § = 0, where S is the cross-section of the bar, / = 2L, m is the mass of the bars and
wy 1s the horizontal displacement at the center of the bars corresponding to the initial rotation, 0. oy is the
dynamic flow stress obtained using the Cowper—Symmonds equation. The final rotation and angular veloc-
ity at this first phase of motion are given by

2 12 . 2 12 12
0, = =wy cosh \/ﬂrl and 0, =-wy 594 sinh Sadrl , (36)
[ ml [ ml ml

which are used as the initial conditions for the second (bending) phase of motion ruled by

L*(m+ G) sin 0 cos 00 +My+ M,

0+
L*[m/3 + (m + G)sin’0]

0, (37)

lig

Fig. 7. A two-plate structure under an axial impact.
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possible to be solved numerically when adopting

A A
M, = ( ) P 1|M, and M,= ( ) P 1| m,, (38)

8D) 2p+1 4D 2p+1

where M = o,bh*/4, is the bending moment, b and / are the plate width and thickness and a hinge length of
4h was adopted (Tam and Calladine, 1991).

If one tries to scale these equations by f, we notice at once that they cannot obey the scaling laws due to
the fact that the constants D and ¢ as well as the static flow stress, o, are different in the model and in the
prototype.

By numerically solving the governing equation, one can obtain the evolution of the rotation angle, 0, as
shown in Fig. §(a), for different scaling factors, when the model is made of an aluminium material and the
prototype made of steel. It is evident and expected that the angular motion for the various scaling factors
does not collapse in a single curve, as one would wish in an experimental programme, the reason being, of
course, that different materials are used for the model and the prototype.

40
—scalel »
=
304 — -scael/2 {",,-5‘
---scae /4 o
— - scale /10 ,,‘ﬁ'/y
Q/ 20 |
10 4
O %l- T T T T
0 0.2 04 0.6 0.8 1
(@ t/z,
20

(b) t/z,

Fig. 8. Lateral plate movement as given by the rotation angle, 0, with dimensionless time for different scaling factors: (a) no correction
for distortion has been applied and (b) correction applied. The prototype is made of mild steel and the models of aluminium.
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5.1. Correction procedure and results

We now seek a new impact velocity which, when applied to the aluminium models associated with the
various scaling factors, will yield the same scaled behaviour as for the mild steel prototype. To this end, the
equatlon of motions (35) and (37) are solved initially with no correction whatsoever, i.e. f,, = 1.

0™ at the end of the motion is then used in Eq. (32), which becomes

Vam 12
0 m
00, {(ﬁ!/o 4Dm) 2qq+1 + 1}

o | (35) " 2 1]

for the present case. This allows the calculation of 8, to be used in all the scaled equations of motion and
in the dynamic flow stress

v 1/q
@:QQ+%ﬁQ (40)

ﬁVO = (39)

presented in the (scaled) initial conditions for the second phase of motion (Eq. (36)) (Oshiro and Alves,
2004).

The evolution of the rotation angle, 6, for double plate prototype and models made from the materials in
Table 3 hit by a 6.41 kg mass and with the dimensions L =25 mm, # = 1.6 mm, » = 5.0mm and 6y = 1.07°
are shown in Fig. 8(a) for different scaling factors. It is evident that the angular motion is sensitive to the
scaling factor since the model and the prototype are made of different materials.

Table 5

Results at the end of the motion for corrected, ¢, and non-corrected, nc, models with a strength of an aluminium alloy
Variable p=1 p=1/2 p=1/4 B=1/10
Br, 1.00 0.5430 0.5428 0.5426
0° (°) 17.4 17.1 17.0 16.8
0" (°) 17.4 34.3 34.0 33.6
Error® (%) 0.0 1.6 2.5 3.8
Error™ (%) 0.0 97.0 95.4 92.9
7y (ms) 0.510 0.599 0.491 0.480
7} (ms) 0.510 1.76 1.74 1.70
Error® (%) 0.0 2.3 3.8 6.1
Error™ (%) 0.0 245.2 240.2 232.4
A° (m/s?) 12,086 12,372 12,559 12,865
A" (m/s?) 12,086 3650 3704 3791
Error® (%) 0.0 2.4 39 6.4
Error™ (%) 0.0 69.8 69.4 68.6
& (1/s) 345 351 353 357
&" (1/s) 345 198 199 201
Error® (%) 0.0 2.4 3.9 6.4
Error™ (%) 0.0 42.7 424 41.8
c° (MPa) 484 496 503 515
"¢ (MPa) 484 146 148 152
Error® (%) 0.0 2.4 39 6.4
Error™ (%) 0.0 69.8 69.4 68.6

Errors are absolute and relative to the prototype (f = 1), which is made from a mild steel.
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Relative to the mild steel prototype, the observed deviations of the non-corrected aluminium scaled
models are listed in Table 5 for various scaling factors and variables of the phenomenon at the end of
the motion. The results with the methodology advocated here are also listed in Table 5.

It is evident that the errors in most of the variables were reduced to minimum values and such that the
evolution of the plate lateral displacement with time is nearly the same for the various scaling factors used,
as indicated in Fig. §(b). In particular, the maximum error for the rotation angle is 3.8% for the scaling
factor f = 1/10.

6. Discussion

In structural impact, the problem of distortion of the standard scaling laws is a severe limitation for
inferring the behaviour of a prototype from the model response. This is mainly due to the material strain
rate sensitivity, as clearly indicated in Eq. (7) and Fig. 2. Oshiro and Alves (2004) and Alves and Oshiro (in
press) have approached this problem and a methodology which virtually eliminates any distortion of the
scaling laws due to material strain rate sensitivity has been suggested and proven to be successful.

In the present article, the alluded methodology was expanded to deal with the case when the model and
the prototype are made from different materials. The underlying motivation is that, when working with
models which are too small or too large in relation to the prototype, it is rather difficult to ensure that their
material properties will be the same, specially the stress—strain curve. Also, small differences in the material
behaviour can lead to different structural behaviours, which is critical when dealing with instabilities as in
the buckling of shells (Karagiozova and Alves, 2004).

In order to test the methodology developed, three dynamic problems were chosen, i.e. a blast load acting
on a beam, the transverse impact of a mass on a beam and the axial impact in a double plate. In all these
problems, the prototype behaviour was taken as the reference. Hence, it was our aim to verify whether by
knowing the response of the models it would be possible to forecast the prototype response. It is stressed
here that two very distinct materials were chosen: for the model, it was aluminium material and for the pro-
totype, it was mild steel.

Accordingly, it has been shown that it is indeed possible to infer the behaviour of a mild steel prototype,
even in the extreme case when the models are made of an aluminium alloy. This seems a very important
result in the context of the theory of scaling impacted structures. Indeed, it is possible to affirm that the
problem of non-scalability of strain rate sensitive structures is now solved, with the additional important
advantage that the model and the prototype can be made of different materials.

It is also noticeable from the previous sections that the whole procedure for correction is quite simple in
the sense that the corrected loading configuration capable of scaling the structural response can easily be
obtained.

It should be indicated that the present methodology has been tested for other cases (Alves and Oshiro, in
press; Oshiro and Alves, 2004) and that so far no flaw has been detected. The present methodology has,
however, a limitation.

In deriving Eq. (4), it was assumed that the wave speed was the same in the model, ¢, and in the proto-
type, C. Otherwise, Eq. (4) would read

t:,/)’T%. (41)

So, strictly speaking, Eqgs. (4) and (41) lead to different results which, in turn, may affect the model re-
sponse for cases where elastic effects are important. For the problems analysed here, however, these effects
are not taken into account. Also, as indicated in Table 3, C/c = 0.99, which ensures the numerical values of
Egs. (4) and (41) to be virtually the same.
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In the more general case, an improvement in the present theory is necessary to take this shortcoming into
account. This is particularly important in the context of buckling initiation, whose peak load depends on
these parameters (Karagiozova et al., 2000).

7. Conclusion

This article shows that it is possible to scale structures subjected to impact loads when their models are
made of another material different from the prototype one. For this, a technique based on a new set of
dimensionless numbers, coming from a mass, velocity, stress basis rather than the traditional mass, time,
length basis, has been used.

It is quite appealing that the models and the prototypes can be constructed from different materials. This
substantially facilitates the task of crafting models similar to the prototype.

Hence, it is possible from the present theory to make a plastic model and from its response to infer the
behaviour of a metal prototype, at least for the case when elastic effects are secondary. The various benefits
one can obtain with the approach discussed here are enormous and even with dissimilar materials the sca-
lability of a structure can be guaranteed within a very small error.

The approach is simple, robust and accurate and such that the problem of non-scalability of dissimilar
model and prototype material strengths is no longer an unsolved one.
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